ФГБОУ ВО НОВОСИБИРСКИЙ ГАУ

Кафедра химии

Per. № <u>B ∋. 03 - 230/y</u> «<u>30</u>» <u>06</u> 20<u>23</u> г. **УТВЕРЖДЕН**

Т.И. Бокова

на заседании кафедры Протокол от «27» июня 2023 г. №10 Заведующий кафедрой

Шваў (подпись)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Б1.О.22 Неорганическая и аналитическая химия Шифр и наименование дисциплины

36.03.01 Ветеринарно-санитарная экспертиза Код и наименование направления подготовки

Ветеринарно-санитарная экспертиза ^{Направленность} (профиль)

Паспорт фонда оценочных средств

№ п/п	Контролируемые темы дисциплины*	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1.	Основные понятия и законы.	УК-1, ОПК-4	Проверочная работа
2.	Способы выражения концентрации растворов	УК-1, ОПК-4	Проверочная работа
3.	Растворы электролитов. Ионные равновесия и обменные реакции в растворах электролитов. Ионное произведение воды. Гидролиз солей	УК-1, ОПК-4	Проверочная работа
4.	Химическая кинетика. Скорость реакции и методы её регулирования. Химическое равновесие	УК-1, ОПК-4	Проверочная работа
5.	Строение атомов. Основные понятия квантовой теории Химическая связь. Периодический закон. Периодическая система Д.И. Менделеева	УК-1, ОПК-4	Проверочная работа
6.	Окислительно-восстановительные реакции.	УК-1, ОПК-4	Проверочная работа
7.	Комплексные соединения.	УК-1, ОПК-4	Тест
8.	Количественный анализ. Гравиметрия	УК-1, ОПК-4	Проверочная работа
9.	Титриметрические методы анализа	УК-1, ОПК-4	Контрольные вопросы

ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ

1.Энергетика химических процессов

Основные законы и понятия химии

- 1. Указать, к каким классам неорганических соединений относятся следующие вещества: $Al(OH)_3$, MnO_2 , H_2CrO_4 , $ZnSO_4$, Na_3AsO_4 , N_2O_5 , H_3PO_4 .
- 2. Написать уравнения реакций, характеризующие свойства H_2SO_4 , как представителя класса.
- 3. Написать уравнение реакции между H₂SO₄ и Cr(OH)₃.
- 4. Составить уравнения реакций, с помощью которых можно осуществить следующие превращения:

 $Mg \rightarrow Mg(OH)_2 \rightarrow MgCl_2 \rightarrow Mg_3(PO_4)_2$.

- 5. Какие оксиды могут быть получены при нагревании H₂SiO₃, Cu(OH)₂?
- 6. Найти эмпирические формулы следующих оснований: гидроксид железа (III), гидроксид бария, гидроксид аммония.
- 7. По формулам оксидов Na₂O и Cr₂O₃ составить формулы соответствующих гидроксидов.
- 8. К каким типам относятся следующие соли: $Mn(NO_3)_2$, $CuSO_4$, $(ZnOH)_2SO_4$, $NaHSO_3$, $FeOHCl_2$, MgOHCl, K_2HPO_4 .
- 9. Написать эмпирическую формулу оксида железа, зная, что кислород двухвалентен, а железо трехвалентно.
- 10. Написать формулы оксидов, соответствующих гидроксидам: H_3PO_3 , $H_2S_2O_7$, LiOH, $Cu(OH)_2$, $Cr(OH)_3$.
- 11. Какую общую формулу имеет основание?
- a) Me(OH)n; б) $H_2(Ac)$; в) Эт On; Γ) Mem (Ac)n.
- 12. Количество вещества это:
- а) порция вещества, измеренная в молях; б) число структурных частиц, равное $6*10^{23}$;
- в) масса вещества; г) навеска вещества.
- 13. Мельчащей химически неделимой частицей вещества является: а) молекула; б) ион; θ) amom: Γ) химический элемент.
- 14. Какой из кислот соответствует название «сернистая кислота»?
- a) H_2S ; б) $H_2S_2O_3$; θ) H_2SO_3 ; Γ) H_2SO_4 .
- 15. Амфотерными свойствами не обладает: a) ZnO; б) Zn(OH) $_2$; в) Al $_2$ O $_3$; г) Cu_2O
- 16. Оксид кремния SiO_2 относится к классу:
- a) кислотных оксидов; б) основных оксидов; в) амфотерных оксидов; г) несолеобразующих оксидов.
- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
 - оценка «хорошо» 70-79%;
 - оценка «удовлетворительно» 60-69%;
 - оценка «неудовлетворительно» менее 60%.

Химическая кинетика. Скорость реакции и методы её регулирования. Химическое равновесие

- 1. Написать математическое выражение закона действия масс для реакции:
- a) 4Fe (TB.) + $3O_2 \leftrightarrow 2Fe_2O_3$ (TB.);
- 6) N_2 + 3 H_2 ↔ 2 NH_3 .

- 2. Во сколько раз увеличится скорость реакции 4Fe (тв.) + $3O_2 \leftrightarrow 2Fe_2O_3$ (тв.) при увеличении давления в 3 раза?
- 3. На сколько градусов следует повысить температуру, чтобы скорость реакции возросла в 8 раз?
- 4. Написать математическое выражение закона действия масс для реакции:
- a) $CO_2(\Gamma) + C(TB) \leftrightarrow 2CO(\Gamma)$;
- (σ) CO₂ (σ.)+ H₂ (σ.) (σ.) + H₂O (σ.) (σ.)
- 5. Написать выражение констант равновесия реакций:
- a) $2CO \leftrightarrow CO_2 + C$ (TB.) Q;
- O CO₂ + H₂ ↔ CO + H₂O (πap)- Q.
- 7. Вычислить константу равновесия системы 2CO \leftrightarrow CO₂ + C (тв.), если в состоянии равновесия концентрация [CO] = 0,04 моль/л; концентрация [CO₂] = 0,05 моль/л.
- 8. Как повлияет на выход хлора в системе:
- $4HCl_{(r)} + O_{2(r)} \leftrightarrow 2Cl_{2(r)} + 2H_2O_{(ж)}; \Delta H^{o}_{298} = -202,4кДж$

повышение температуры, уменьшение общего объема смеси, уменьшение концентрации кислорода?

- 10. Согласно правилу Вант-Гоффа при повышении температуры на 10 К скорость многих реакций:
- а) увеличивается в 2–4 раза; б) увеличивается в 5–10 раз; в) уменьшается в 2–4 раза; г) уменьшается в 5–10 раз
- 11. Какие из нижеперечисленных факторов приведут к смещению равновесия реакции
- $2SO_2(\Gamma) + O_2(\Gamma) = 2SO_3(\Gamma), \Delta H^{\circ}p = -196,6 кДж$
- а) уменьшение реакционного объёма;
- б) повышение температуры;
- в) увеличение реакционного объёма;
- г) понижение температуры;
- д) увеличение концентрации O_2 ?
- 12. Химические реакции, протекающие на границе раздела фаз (например, твердой и жидкой, твердой и газообразной), называются:
- а) гомолитическими; б) гетеролитическими.
- 13. На смещение гетерогенного химического равновесия твердые исходные вещества и продукты реакции: а) влияют; б) не влияют
- 14. В какую сторону сместится химическое равновесие в системе $N_2 + O_2 = 2NO Q$ при понижении температуры:
- а) в сторону продуктов реакции; б) θ сторону исходных θ ещест θ ; в) равновесие не смещается?
- 15. В какую сторону сместится химическое равновесие в системе $CO_2(\Gamma) + C(TB) = 2CO(\Gamma)$ при повышении давления:
- а) в сторону продуктов реакции, б) θ сторону исходных θ ещест θ , в) равновесие не смещается?
- 16. Назовите внешние воздействия, которые позволят сместить химическое равновесие и получить максимальное количество металлического железа в системе

 $Fe_2O_3(тв) + 3H_2(газ) = 2 Fe (тв) + 3 H_2O (ж)$

- 1) увеличение концентрации водорода
- 2) увеличение количества оксида железа (III)
- 3) увеличение количества воды
- 4) удаление воды из системы
- 5) увеличение давления в системе
- 6) уменьшение давления в системе
- 7) введение катализатора

- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
 - оценка «хорошо» 70-79%;
 - оценка «удовлетворительно» 60-69%;
 - оценка «неудовлетворительно» менее 60%.

Раздел 2. Строение атома и периодическая система элементов

- 1. Атом элемента содержит 24 электрона. Написать электронную формулу атома элемента и графическую формулу валентных электронов в нормальном и возбужденном состоянии.
- 2. Строение валентных электронов атома элемента $4s^23d^1$. Назовите элемент, напишите полную электронную формулу, назовите период и группу, в которой он находится. Назовите его полные аналоги.
- 3. Напишите электронную формулу катиона S^{+6} .
- 4. Как меняется радиус атома, металлические свойства в ряду элементов: Li, Be, B, C?
- 5. Определить тип связи в соединении, указать наиболее электроотрицательный элемент H_3BO_3 , $AlCl_3$.
- 6. Как меняется энергия ионизации, сродство к электрону, металлические свойства в ряду элементов: C, Si, Ge, Sn?
- 7. Строение валентных электронов атома элемента 4s². Назовите элемент, напишите полную электронную формулу, назовите период и группу, в которой он находится. Составьте формулу высшего оксида. Назовите его полные аналоги.
- 8. Напишите электронную формулу аниона S²-
- 9. Число энергетических уровней в атоме равно: а) номеру элемента; δ номеру периода; в) номеру группы; г) заряду ядра.
- 10. Максимальное число связей, которые могут иметь s- и p-элементы III-го периода периодической системы (по методу BC) равно: a) a; b) a; b) a; b) a: a0.
- 11. Число неспаренных электронов в атоме хрома в невозбужденном состоянии равно: a) 1; б) 4; в) 5; $\it 2$) 6.
- 12. Число валентных электронов у атома с электронной конфигурацией $1s^22s^22p^63s^23p^64s^13d^5$ равно: а) 1; б) 3; в) 5; г) 6.
- 13. Количество атомных орбиталей на f-подуровне: a)1; б) 3; в) 5; г) 7.
- 14. Формула высшего оксида элемента, конфигурация основного состояния валентного энергетического уровня которого (n-1) d^5 ns², имеет вид: a) ∂_2O_7 ; b) ∂_2O_5 ; ∂_2O
- 15. Спин-валентность серы в стабильном состоянии равна: a) 2; b) 4; b) 6; c) 8.
- 16. Число валентных электронов в атоме равно: а) номеру элемента; б) номеру периода; θ) номеру группы; Γ) заряду ядра.
- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
 - оценка «хорошо» 70-79%;
 - оценка «удовлетворительно» 60-69%;
 - оценка «неудовлетворительно» менее 60%.

3. Кислотно-основные и окислительно-восстановительные свойства веществ

Способы выражения концентрации растворов

- 1. Рассчитать сколько моль и моль-эквивалентов составляют 44,5 г AlCl₃.
- 2. Сколько грамм AlCl₃ необходимо взять для приготовления 50 г 14 % раствора?
- 3. Сколько грамм воды содержится в 300 г 10 % раствора?

- 4. Определите молярную концентрацию раствора, содержащего в 3 л18,9 г HNO₃.
- 5. В каком объеме 0,5M раствора ZnSO₄ содержится 16,4 г соли?
- 6. Определите эквивалентную концентрацию раствора, в 2 л которого содержится 80,5 г $ZnSO_4$.
- 7. Определите процентную концентрацию раствора HC1, полученного растворением 30 г хлористого водорода в 70 г воды.
- 8. Определите молярную концентрацию раствора К₂СО₃, содержащего в 100 мл 2,76 г соли.
- 9. Молярная концентрация показывает:
- а) сколько граммов растворенного вещества содержится в 1 л раствора;
- б) сколько граммов растворенного вещества содержится в 1 л растворителя;
- в) долю растворенного вещества от всего раствора;
- г) сколько молей растворенного вещества содержится в 1 л раствора.
- 10. Способ выражения концентрации раствора, который показывает массу растворенного вещества в 1 мл раствора называется:
- а) молярная доля; б) титр; в) молярность; г) молярная концентрация эквивалента
- 11. Кристаллические вещества, в состав которых входит химически связанная вода называют: *а) кристаллогидраты*; б) гидриты; в) электролиты; г) сольваты.
- 12. Какую массу воды следует прибавить к 180 г 15%-ного раствора для получения 12%-ного раствора:1) 35г; 2) 40г; 3) 45г; 4) 50 г?
- 13. Молярная концентрация эквивалентов раствора показывает:
- а) отношение массы растворителя к массе растворенного вещества;
- б) число молей растворенного вещества в одном литре раствора;
- в) отношение количества вещества к массе растворителя;
- г) количество моль-эквивалентов в 1 литре раствора.
- 14 Раствор, в котором вещество при данной температуре больше не растворяется, называется: *а) насыщенным*; *б)* разбавленным; в) ненасыщенным.
- 15. Формула для определения массовой доли вещества:
- 1) m = V/p; 2) C = n/V; 3) m(в-ва) = m(p-pa) m (воды); 4) $\omega = m(\theta \theta a) / m(p-pa)$
- 16. Выберите определение растворимости: а) способность смешиваться с другими веществами и образовывать гетерогенные системы;
- б) способность вещества растворяться в растворителе;
- в) способность веществ смешиваться с другими веществами и образовывать однородные смеси.
- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
 - оценка «хорошо» 70-79%;
 - оценка «удовлетворительно» 60-69%;
 - оценка «неудовлетворительно» менее 60%.

Растворы электролитов. Ионные равновесия и обменные реакции в растворах электролитов. Ионное произведение воды. Гидролиз солей

- 1. Написать уравнения реакций электролитической диссоциации следующих веществ: Fe(OH)₃; HMnO₄; Ca(NO₃)₂, NaHSO₃
- 2. По данному сокращенному ионному уравнению составить 2 молекулярных:

$$H^{+} + OH^{-} = H_{2}O$$

- 3. Кислым или щелочным является раствор с pOH=3. Доказать расчетом H^+ и pH.
- 4. Закончить уравнение реакции и написать полное и сокращенное ионные уравнения: $AgNO_3 + CaCl_2 =$
- 5. По данному сокращенному ионному уравнению составить 2 молекулярных:

$$Fe^{3+} + OH^{-} = Fe(OH)_{3}$$

- 6. Написать уравнения реакции гидролиза в ионной и молекулярной форме по 1 ступени солей Na₂SiO₃, Zn(NO₃)₂. Указать характер среды.
- 7. Концентрация ионов гидроксила в растворе равна 10^{-9} моль/л. Чему равен водородный показатель. Кислым или щелочным является раствор.
- 8. Концентрация ионов водорода в растворе равна 10^{-12} моль/л. Чему равен водородный показатель. Кислым или щелочным является раствор?
- 9. С каким из реагентов при взаимодействии с $BaCl_2$ реакция будет протекать только в прямом направлении: $a) H_2SO_4$; б) $Mg(NO_3)_2$; в) KI; r) HBr.
- 10. Согласно положениям ТЭД к катоду будут перемещаться:
- *а) только катионы*; б) только анионы; в) нейтральные атомы и группы атомов; г) и катионы, и анионы.
- 11. Теория электролитической диссоциации сформулирована:
- а) С.Аррениусом; б) А.М. Бутлеровым; в) М.В. Ломоносовым; г) Д.И. Менделеевым.
- 12. С помощью каких индикаторов можно установить, что раствор имеет щелочной характер: *а) фенолфталеин*; б) метилоранж; в) метиловый красный; *г) лакмус*?
- 13. Какие вещества образуют при диссоциации ионы Mn²⁺:
- а) KMnO₄; б) MnCl₂; в) Na₂MnO₄; г) MnO₂?
- 14. Какие вещества в ионном уравнении реакции записываются в виде молекул:
- a) H_2S ; б) $Pb(NO_3)_2$; θ) PbS; Γ) HNO_3 ?
- 15. Сколько ионов образуется при диссоциации молекулы (NH₄)₂SO₄: a) 2; б) 9; θ) 3; г) 4?
- 16. Соли, образованные сильной кислотой и слабым основанием гидролизуются:
- а) *по катиону металла*; б) по анионы кислотного остатка; в) по катиону и аниону; г) гидролизу не подвергаются.
- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
 - оценка «хорошо» 70-79%;
 - оценка «удовлетворительно» 60-69%;
 - оценка «неудовлетворительно» менее 60%.

Окислительно-восстановительные реакции

1.	Определить степень окисления иода в следующих соединениях
KJ	HJO ₄ , J ₂ O ₅ , HJO, HJ.

- 2. Определитб заряд иона иода в составе сложного иона: $(JO_2)^-$; $(JO_3)^-$.
- 3. Укажите, в каком из процессов происходит окисление, а в каком восстановление: $Sn^{2+} \rightarrow Sn^{4+}$: $2Fe \rightarrow Fe_2O_3$.
- 4. Какие из приведенных ниже веществ могут быть только окислителями, только восстановителями или проявляют и окислительные и восстановительные свойства:
- $HCl; K_2Cr_2O_7; Zn; H_2CO_3; NH_3.$
- 5. С помощью метода электронного баланса подберите коэффициенты для реакции:
- $P + HNO_3 + H_2O \longrightarrow H_3PO_4 + NO$
- 6. Рассчитайте молярную массу эквивалентов окислителя и восстановителя в уравнении реакции: $H_2S+Cl_2+H_2O{\longrightarrow}H_2SO_4+HCl$
- 7. Чему равен коэффициент перед формулой восстановителя и окислителя в уравнении реакции, схема которой: $P + KClO_3 \rightarrow KCl + P_2O_5$.
- 8. Дополнить: как окислителем, так и восстановителем в OBP может быть частица, содержащая элемент в степени окисления.
- 9. Степень окисления серы в кислотном остатке $Al_2(SO_3)_3$ равна: a) + 2; б) + 6; в) +4; г) +3.
- 10. Окислитель это:
- а) атом, который отдаёт электроны и понижает свою степень окисления;

- б) атом, который принимает электроны и понижает свою степень окисления;
- в) атом, который принимает электроны и повышает свою степень окисления;
- г) атом, который отдаёт электроны и повышает свою степень окисления
- 11. Процесс восстановления это процесс: а) отдачи электронов; б) принятия электронов;
- в) повышения степени окисления атома.
- 12. Окислитель это атом, молекула или ион, который:
- а) увеличивает свою степень окисления;
- б) принимает электроны;
- в) окисляется;
- г) отдаёт свои электроны.
- 13. Полуреакция $C^{+2} \to C^{+4}$ соответствует реакции:
- a) $C + O_2 = CO_2$; 6) $2CO + O_2 = 2CO_2$; B) $C + CO_2 = 2CO$; r) $CH_4 + 2O_2 = CO_2 + 2H_2O$.
- 14. Наибольшее значение степени окисления фосфор имеет в соединении:
- a) KH₂PO₃, δ) Na₃P, β) H₃PO₄, Γ) P₄
- 15. В реакции, схема которой $H_2S + H_2SO_{4 \text{ (конц.)}}$ → $SO_2 + S + H_2O$, окислителем является: $a) S^{+6}$, б) S^{-2} , в) H_2^{0} , г) H^{+1}
- 16. Окислительно-восстановительной реакцией не является:
- a) $Cl_2 + H_2 = 2HCl$, 6) $2Cl_2 + 2H_2O = 4HCl + O_2$,
- B) $Cl_2 + 2KI = 2KCl + I_2$, 2) $HCl + AgNO_3 = AgCl + HNO_3$
- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
 - оценка «хорошо» 70-79%;
 - оценка «удовлетворительно» 60-69%;
 - оценка «неудовлетворительно» менее 60%.

Комплексные соединения

- 1. Степень окисления иона-комплексообразователя в комплексном ионе [Ni(NH₃)₅Cl]⁺:
- a) +3; δ) +2; B) +1; Γ) -2
- 2. Выберите формулу аквапентацианоферрата (II) калия:
- a) $K_3[Fe(CN)_6H_2O]$; δ) $K_3[Fe(CN)_5H_2O]$;
- в) Ca [Fe(CN) $_5$ H $_2$ O]; г) К $_2$ [Fe(CN) $_5$ H $_2$ O]
- 3. Комплексному соединению $K_3[Co(NO_2)_6(NH_3)_2]$ соответствует название:
- а) гексанитродиамминкобальтат (II) калия;
- б) диамминогексанитратокобальтат (III) кальция;
- в) диаммингексанитрокобальтат (III) калия;
- г) гексанитродиаквокарбонила калий (I.)
- 4. В соединении $K_3[Fe(CN)_5H_2O]$ координационное число равно:
- a) 5; б) 6; в) 1; г) 3.
- 5. При растворении Na₂[Zn(OH)₄] в воде образуются:
- а) Na⁺, [Zn(OH)]⁺, OH⁻; б) Na⁺, Zn²⁺; в) Na⁺, Zn²⁺, OH⁻; г) 2Na⁺, [Zn(OH)₄]²⁻
- 6. Превращение $[Al(OH)_4(H_2O)_2]^- \rightarrow Al(OH)_3$ представляет собой процесс:
- а) восстановление; б) окисление; в) дегидратация; г) разрушение комплексного иона; д) обменное взаимодействие
- 7. Металл, входящий в состав гемоглобина:
- a) Cu; δ) Mg; β) Fe; Γ) Zn
- 8. Среди указанных комплексов найдите цианокомплекс:
- a) $K_4[Fe(NO_2)_6]$; б) $K_3[FeCl_6]$; в) $Na_3[Co(NO_2)_6]$; г) $K_3[Fe(CN)_6]$
- 9. Составить уравнения электролитической диссоциации комплексного соединения $K[Pt(NH_3)Cl_3]$ и записать соответствующие им выражение константы нестойкости комплексного иона.

- 10. Константы нестойкости комплексных ионов $[Cd(NH_3)_4]^{2+}$, $[Zn(NH_3)_4]^{2+}$, $[Cu(NH_3)_4]^{2+}$ соответственно равны $1,0\cdot10^{-7}$; $2,6\cdot10^{-11}$; $4,6\cdot10^{-14}$. Какой из этих ионов является более прочным? Чему равно координационное число и заряд комплексообразователя в этих соединениях?
- 11. Определить заряд комплексного иона, координационное число и заряд комплексообразователя в соединениях $K_4[Fe(CN)_6]$, $[Cr(NH_3)_6]C1_3$, $K_2[HgI_4]$.
- 12. Написать формулы комплексных соединений, имеющих состав $AgCl*2NH_3$; AgCN*KCN; $CoC1_3*3KC1$.
- 13. Написать уравнения первичной диссоциации на ионы следующих комплексных солей кобальта, заключив комплексные ионы в квадратные скобки: Co(NO₃)₃*3KNO₃, Co(NO₂)₃*KNO₂*2NH₃. Координационное число кобальта равно 6.
- 14. Написать молекулярное и ионные уравнения реакции между K_2SO_4 и $Na_3[Co(NO_2)_6]$. В результате реакции образуется труднорастворимое комплексное соединение.
- 15. Написать выражения для констант нестойкости комплексных ионов [Cu(CN)4] $^{2-}$; [Zn(NH₃)₃ H₂O]²⁺. Чему равен заряд и координационное число комплексообразователей в этих ионах?
- 16. Написать координационные формулы следующих комплексных соединений: а) гексанитрокобальтат (III) калия; б) хлорид гексааминникеля (II).
- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
 - оценка «хорошо» 70-79%;
 - оценка «удовлетворительно» 60-69%;
 - оценка «неудовлетворительно» менее 60%.

4. Аналитическая химия. Качественный и количественный анализ

Количественный анализ. Гравиметрия

- 1. Вычислить гравиметрический фактор при определении Ba^{2+} , если гравиметрической формой является сульфат бария.
- 2. Для определения воды в лекарственном сырье была взята навеска 0,5050 г. Масса тигля с сырьем была 8,7360 г. а после термообработки она составила 8,4350 г. Рассчитать содержание воды в лекарственном сырье.
- 3. Массовая доля нерастворимых примесей в поваренной соли составляет 6,3%. Определить массу примесей и чистой соли в её партии массой 500 кг.
- 4. Масса образца хлорида бария составила 1,4575 г. После высушивания образца при температуре 1200С масса образца составила 1,2428 г. Рассчитать массу воды в препарате.
- 5. Выразить гравиметрические факторы при определении P_2O_5 , если гравиметрической формой служит соединение $Mg_2P_2O_7$.
- 6. При обработке образца массой 50 г, содержащим карбонат кальция, избытком соляной кислоты образовался газ объемом 4,48 л. Рассчитать содержание карбоната кальция в образце.
- 7. Какой объем 0,01 М раствора соляной кислоты необходим для количественного осаждения хлорида серебра из раствора, содержащего 10 мг нитрата серебра?
- 8. На раствор объемом 500 мл, содержащем хлорид бария, подействовали серной кислотой. В результате получен осадок массой 25,3 г. Определить массу и молярную концентрацию хлорида бария в растворе.
- 9. Гравиметрическая форма это форма, в виде которой определяемое вещество:
- 1) взвешивают, 2) осаждают, 3) осаждают, а затем взвешивают, 4) промывают и затем фильтруют.
- 10. Недостатком гравиметрического анализа является:

- 1) длительность, 2) низкая чувствительность, 3) плохая воспроизводимость, 4) дороговизна оборудования
- 11. В гравиметрии аналитическим сигналом является:
- 1) интенсивность, 2) масса, 3) температура, 4) потенциал
- 12. Выделение вещества в гравиметрическом анализе проводят чаще всего:
- 1) растворением, 2) сублимацией, 3) выпариванием, 4) осаждением
- 13. Оптимальная масса гравиметрической формы для кристаллических осадков равна:
- 1) 0,1 г, 2) 0,5 г, 3) 3 г, 4) 1г.
- 14. Для полного осаждения используют избыток нелетучего растворителя:
- 1) полуторократный, 2) двухкратный, 3) трехкратный
- 15. Гравиметрия основана на:
- 1) точном измерении объёмов растворов известной и неизвестной концентрации,
- 2) точном измерении массы определяемого компонента,
- 3) точном измерении объёма раствора, пошедшего на реакцию с анализируемым объектом
- 16. Осаждаемая форма:
- 1) вещество, содержащее анализируемый компонент,
- 2) осадок точно известного состава,
- 3) вещество, которое осаждается
- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
 - оценка «хорошо» 70-79%;
 - оценка «удовлетворительно» 60-69%;
 - оценка «неудовлетворительно» менее 60%.

Титриметрические методы анализа

- 1. Объяснить, что такое интервал перехода и показатель титрования индикатора.
- 2. Какой закон лежит в основе титриметрических методов анализа?
- 3. Какой метод титрования лежит в основе определения жесткости воды?
- 4. На титрование 25,00 мл раствора КОН расходуется 28,40 мл 0,1265 н. H_2SO_4 . Чему равна нормальность раствора КОН.
- 5. На реакцию с хлоридом калия, содержащимся в 10 мл раствора, израсходовано 45 мл раствора нитрата серебра с молярной концентрацией эквивалентов 0,02н. Сколько грамм хлорида калия содержится в 1 л раствора?
- 6. В какой области рН лежит точка эквивиалентности при титровании сильной кислоты сильным основанием?
- 7. В какой области рН лежит точка эквивиалентности при титровании слабого основания сильной кислотой?
- 8. Какую окраску имеет фенолфталеин, лакмус, метилоранж в щелочной среде?
- 9. Момент завершения химической реакции между титрантом и исследуемым веществом называют: а) скачком титрования; б) кривой титрования; в) линией нейтральности; г) точкой эквивалентности.
- 10. Что называется титром раствором?
- а) масса вещества в граммах, содержащаяся в 1л раствора,
- б) масса вещества в граммах, содержащаяся в 1л растворителя,
- в) количество эквивалентов вещества, содержащееся в 1л раствора,
- г) масса вещества в граммах, содержащаяся в 1мл растворителя.
- 11. Рассчитайте титр раствора, если в 250,0 мл его содержится 10,00 г NaOH:
- a) 4,00, б) 0,25, в) 25,00, г) 0,0400
- 12. Сколько мл 0,0200 н KMnO₄ потребуется на титрование 20,00 мл 0,0300 н раствора FeSO₄:

- а)10,00; б) 30,00; в) 40,00; г) 20,00
- 13. Какие реакции лежат в основе методов редоксиметрии?
- а) реакции нейтрализации, б) реакции осаждения, в) реакции комплексообразования, г) окислительно- восстановительные реакции
- 14. Как вычисляется молярная масса эквивалента в реакциях окисления-восстановления?
- а) молярная масса делится на число ионов водорода, участвующих в реакции,
- б) молярная масса делится на число электронов, участвующих в реакции,
- в) молярная масса делится на число ионов гидроксида, участвующих в реакции,
- r) молярная масса делится на произведение степени окисления металла на число атомов металла
- 15. Показатель титрования выбранного рН-индикатора должен находиться на кривой титрования:
- а) ниже скачка титрования;
- б) выше скачка титрования;
- в) в пределах скачка титрования;
- г) ниже и выше скачка титрования
- 16. Точка эквивалентности лежит в области рН>7 при титровании:
- а) сильного основания сильной кислотой;
- б) слабого основания сильной кислотой:
- в) слабой кислоты сильным основанием;
- г) слабого основания слабой кислотой.
- 17. Аналитическим сигналом в титриметрическом анализе является:
- а) объём; б) плотность; в) масса.
- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
 - оценка «хорошо» 70-79%;
 - оценка «удовлетворительно» 60-69%;
 - оценка «неудовлетворительно» менее 60%.

Составитель	И.В. Васильцова
« »	2023 г.

Список вопросов для подготовки к экзамену

- 1. Способы выражения концентрации растворов. Растворы. Классификация растворов. Растворимость.
- 2. Расчет молярной массы эквивалента.
- 3. Энтальпия процесса. Закон Гесса.
- 4. Энтропия процесса.
- 5. Энергия Гиббса.
- 6. Обратимые и необратимые реакции.
- 7. Принцип Ле-Шателье. Факторы, влияющие на смещение химического равновесия.
- 8. Понятие скорости химической реакции. Факторы, влияющие на скорость химической реакции.
- 9. Закон действия масс для гомогенной и гетерогенной реакции.
- 10. Влияние температуры на скорость химической реакции. Правило Вант-Гоффа.
- 11. Катализ и катализаторы.
- 12. Константа химического равновесия.
- 13. Строение атома. Планетарная, квантово-механическая модель строения атома.
- 14. Квантовые числа.
- 15. Принцип и запрет Паули.
- 16. Правило Хунда.
- 17. Правило Клечковского, получение энергетического ряда Клечковского.
- 18. Периодический закон. Периодическая система Д.И.Менделеева.
- 19. Потенциал ионизации. Сродство к электрону. Металлические свойства. Изменение по группам и периодам.
- 20. Полные и неполные электронные аналоги.
- 21. Природа химической связи. Метод валентных связей.
- 22. Ковалентный тип связи, свойства. Механизм образования.
- 23. Ионный тип связи. Электроотрицательность, степень окисления.
- 24. Теория электролитической диссоциации. Классы неорганических соединений с позиции ТЭД.
- 25. Степень диссоциации электролитов. Константа диссоциации.
- 26. Ионное равновесие воды. Водородный показатель.
- 27. Гидролиз солей. Типичные случаи гидролиза.
- 28. Окисление, восстановление. Окислители, восстановители.
- 29. Порядок уравнивания окислительно-восстановительных реакций.
- 30. Виды окислительно-восстановительных реакций.
- 31. Комплексные соединения. Координационная теория Вернера.
- 32. Механизм образования комплексных соединений.
- 33. Диссоциация комплексных соединений.
- 34. Классификация комплексных соединений.
- 35. Виды и основные стадии химического анализа.
- 36. Аналитический сигнал. Требования, предъявляемые к аналитическим реакциям. Основные понятия аналитической химии: аналитическая реакция, аналитический сигнал, селективные и специфические реакции, мешающие ионы.
- 37. Чувствительность, избирательность и специфичность реакций. Особенности применяемых в качественном анализе реакций.
- 38. Погрешности и ошибки в химическом анализе.
- 39. Принципы и методы качественного анализа.
- 40. Количественный анализ: классификация методов.
- 41. Гравиметрический анализ. Классификация метода.
- 42. Осаждаемая и весовая форма. Расчет гравиметрического фактора.
- 43. Метод осаждения. Последовательность аналитических операций.

- 44. Расчет массовой доли определяемого компонента, массы навески, объема осадителя в методе осаждения.
- 45. Произведение растворимости. Условия образования и растворения осадков.
- 46. Понятия о стандартных веществах. Требования, предъявляемые к стандартным веществам.
- 47. Что такое титрование? Виды титриметрических определений: прямое, обратное, косвенное.
- 48. Титриметрические методы анализа, требования к реакциям. Классификация.
- 49. Закон эквивалентов для реагирующих веществ.
- 50. Кислотно-основное титрование. Кривые титрования. Точка эквивалентности. Выбор индикатора. Интервал перехода индикатора.
- 51. Окислительно-восстановительное титрование. Классификация методов по типу титрантов.
- 52. Перманганатометрия. Сущность метода. Титрант, его приготовление, хранение, стандартизация. Фиксирование точки эквивалентности.
- 53. Йодометрия. Общая характеристика метода.
- 54. Комплексонометрия. Важнейшие комплексы в химическом анализе. Трилонометрия.
- 55. Жесткость воды, ее виды. Методы устранения.
- 56. Осадительное титрование. Общая характеристика метода. Аргентометрия. Стандартный раствор. Определение точки эквивалентности.
- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100%;
- оценка «хорошо» 70-79%;
- оценка «удовлетворительно» 60-69%;
- оценка «неудовлетворительно» менее 60%.

Составитель	И.В. Васильцова
	2007
«»	2023 г.

Темы контрольных работ

- 1. Способы выражения концентрации растворов.
- 2. Энергетика химических процессов.
- 3. Кинетика химических процессов. Химическое равновесие.
- 4. Строение атомов. Основные понятия квантовой теории Химическая связь. Периодический закон. Периодическая система Д.И. Менделеева.
- 5. Растворы электролитов. Ионные равновесия и обменные реакции в растворах электролитов. Ионное произведение воды. Гидролиз солей.
- 6. Окислительно-восстановительные реакции.
- 7. Комплексные соединения.
- 8. Количественный анализ. Гравиметрия.
- 9. Титриметрические методы анализа.

Критерий оценки:

- оценка «отлично» выставляется при правильно выполненной задаче, аккуратно и чисто, в соответствии с требованиями, оформленном решении;
- оценка «хорошо» выставляется при правильно решенной задаче и при наличии в ходе выполнения незначительных помарок;
- оценка «удовлетворительно» выставляется, если после проверки в задаче будут исправлены все ошибки и она будет оформлена в соответствии с пунктом выше.
- во всех остальных случаях работа не засчитывается и выдается другой вариант.

МАТРИЦА СООТВЕТСТВИЯ КРИТЕРИЕВ ОЦЕНКИ УРОВНЮ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

Критерии оценки	Уровень сформированности компетенций		
Оценка по пятибалльной системе			
«Отлично»	«Высокий уровень»		
«Хорошо»	«Повышенный уровень»		
«Удовлетворительно»	«Пороговый уровень»		
«Неудовлетворительно»	«Не достаточный»		
Оценка по системе «зачет – незачет»			
«Зачтено»	«Достаточный»		
«Не зачтено»	«Не достаточный»		

Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

- 1. Положение «О балльно-рейтинговой системе аттестации студентов»: СМК ПНД 08-01-2022, введено приказом от 28.09.2011 №371-О (http://nsau.edu.ru/file/403: режим доступа свободный);
- 2. Положение «О проведении текущего контроля и промежуточной аттестации обучающихся в ФГБОУ ВО Новосибирский ГАУ»: СМК ПНД 77-01-2022, введено в действие приказом от 03.08.2015 №268а-О (http://nsau.edu.ru/file/104821: режим доступа свободный);

Тестовые задания для проверки сформированности компетенции на этапе их освоения по дисциплине «Неорганическая и аналитическая химия»

Код компетенции	Расшифровка
УК-1	Способен осуществлять критический анализ проблемных
	ситуаций на основе системного подхода, вырабатывать
	стратегию действий

- 1. Электронной формуле иона S^{2-} соответствует выражение: a) $1s^22s^22p^63s^23p^4$; *б*) $1s^22s^22p^63s^23p^2$
- 2. Названию гексанитрокобальтат (III) калия соответствует формула:
- a) $K_4[Co(NO_2)_6]$; δ) $K_3[Co(NO_2)_6]$; B) $K_3[Co(NO_2)_6(NH_3)_2]$; Γ) $K_3[Co(NO_3)_6]$
- 3. Масса образца хлорида бария составила 1,4575 г. После высушивания образца при температуре 120^{0} С масса образца составила 1,2428 г. Массовая доля воды в препарате составляет:
- a) 17,3%; б) *14*,7%; в) 8,5%.
- 4.На титрование 25,00 мл раствора КОН расходуется 28,40 мл 0,1265 н. H₂SO₄. Молярная концентрация эквивалента равна:
- а) 0,1437н; б) 0,1114н; в) 0,1265н.
- 5. Вычислить произведение растворимости сульфата бария, если в 100 мл воды растворяется $0.24\cdot10^{-3}$ г этой соли.
- 6. Из навески K_2CO_3 массой 1,3811 г приготовили 200,0 мл раствора. На титрование 15,0 мл раствора израсходовали 11,3 мл раствора H_2SO_4 . Рассчитать молярную концентрацию эквиваленте раствора H_2SO_4 .
- 7. Составить электронную формулу и представить графически размещение валентных электронов по квантовым ячейкам для фосфора.
- 8. Определить, чему равен заряд комплексного иона и степень окисления комплексообразователя в соединении: [Al(H₂O)₅Cl]Br₂.

Код компетенции	Расшифровка		
ОПК-4	Способен обосновывать и реализовывать в		
	профессиональной деятельности современные технологии с		
	использованием приборно-инструментальной базы и		
	использовать основные естественные, биологические и		
	профессиональные понятия, а также методы при решении		
	общепрофессиональных задач		

- 1.Процентная концентрация раствора HC1, полученного растворением $30\$ г хлористого водорода в $110\$ г воды равна:
- a) 27,3%; б) 21,4%; в) 37,5%
- 2. Степень окисления азота в ионе NO_2^- :
- a) +5; 6) +3; 8) -3
- 3. Кислым или щелочным является раствор с рОН=3, чему равна концентрация Н⁺:
- а) кислый, $[H^+] = 10^{-11}$; б) щелочной, $[H^+] = 10^{-11}$; в) щелочной, $[H^+] = 10^{-3}$
- 4. В какой области рН лежит точка эквивалентности при титровании сильной кислоты сильным основанием:
- а) в кислой; б) нейтральной; в) щелочной
- 5. К 200 г 30 %-го раствора соли долили 50 г воды. Какова концентрация полученного раствора?
- 6. Определить методом электронного баланса коэффициенты в уравнении окислительновосстановительной реакции: $HNO_3 + K_2SO_3 \rightarrow K_2SO_4 + NO + H_2O$
- 7. В какую сторону сместится равновесие реакции $2H_2(r)+O_2(r) \rightleftharpoons 2H_2O_{(r)}; \Delta H < 0$ при:

1) повышении температуры; 2) уменьшении давления; 3) увеличении давления: 8. Рассчитать концентрацию ионов водорода в слезной жидкости, pH = 7,4.			
Составитель			И.В. Васильцова
<u>.</u>		<u> </u>	_2023 г.